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Diversity-oriented synthesis of cyclohexenes by combining enzymatic
intermolecular Diels- Alder reactions and decarboxylative functionalizations
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PURPOSE OF THE ABSTRACT

Substituted cyclohexanes are common scaffolds found in both natural products and drug molecules.
Diels-Alderases that can efficiently catalyze intermolecular Diels-Alder reactions to generate cyclohexene ring
systems have received considerable interest. However, the synthetic power of Diels-Alderases is incomparable
with chemo-catalysts due to their limited substrate scopes. Here, we report a new chemo-enzymatic strategy for the
diversity-oriented syntheses of functionalized cyclohexenes. A natural Diels-Alderase variant M3 were generated
with focused rational iterative site-specific mutagenesis, which shows a 34-fold increase in catalytic efficiency,
broad substrate scope, and good to perfect stereoselectivity. Diverse transition-metal-catalyzed decarboxylative
coupling reactions were sequentially used to functionalize the enzymatic Diels-Alder products. This work offers an
efficient synthetic route to structurally diverse cyclohexenes that are not accessible by solely biocatalysis or
chemo-catalysis and illustrates how chemo-catalysis can cooperate with biocatalysis to expand the synthetic
application of biocatalysts.
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