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PURPOSE OF THE ABSTRACT
Poly(ethylene  terephthalate)  (PET)  is  one  of  the  most  commonly  used  polymer  resins,  especially  in  the  food  and
beverage  industry,  as  it  has  great  barrier  properties,  excellent  chemical  resistance,  and  stability  over  a  broad
temperature  range.  Even  though  most  people  are  aware  of  recycling  benefits  and  PET  recycling  rates  are  quite
high for some European countries, in other cases, PET bottle waste ending up in landfills remains above 50%. 
Traditional  recycling  after  mechanical  and  chemical  treatment  can  completely  convert  PET  waste  into  new
products, although the resulting recycled polymer is of lower quality due to mechanical stress and oxidation during
the process  [1]–[3].  Regarding chemical  treatment,  this  alternative  requires  high  temperatures  in  conjunction  with
toxic  chemicals,  making  the  process  cost-effective  and  energy-intensive  [4].  On  the  other  hand,  enzymatic
degradation  of  PET  is  highly  dependent  on  material  properties  such  as  crystallinity  [5],  but  still,  it  is  the  most
eco-friendly  alternative  for  handling  PET  debris,  as  it  requires  mild  reaction  conditions,  reducing  the  energy  and
reagent consumption [6]. Although the development of new polyester hydrolases that act on highly crystalline PET
materials remains a challenge, the enzymatic hydrolysis of PET is a process that is ever-improving [7].
The main enzymes involved in PET degradation are carboxylesterases, cutinases, and lipases [8]. Discovering novel
PET-degrading  enzymes  can  be  a  time-consuming  and  resource-intensive  process.  This  involves  screening
metagenomic libraries using appropriate substrates or following conventional methods of microorganism isolation
and cultivation under optimal conditions [9]. Directed enzyme evolution and semi-rational strategies comprise other
sources for discovering novel PETases, although the major impediment in this approach is the absence of efficient
high-throughput  screening  [9],  [10].  A  usual  approach  followed  by  several  reports  often  includes  short  (C2-C6),
medium (C8-C10), or long-chain (>C10) p-nitrophenyl acyl esters (p-NP esters), which aim to predict and/or compare
putative  PET  hydrolyzing  enzymes  [11]–[13].  Nonetheless,  in  that  case,  no  correlation  between  esterase  and
depolymerizing activity should be taken into consideration [14], as PET polymer structure substantially differs from
these  substrates.  Alternative  approaches  perform  colorimetric,  spectrophotometric,  and  fluorometric
high-throughput assays using substrates, such as synthetic PET oligomers, or PET powder in suspension [17]–[21],
although  these  techniques  are  often  subjected  to  experimental  restrictions  such  as  the  use  of  highly  corrosive
solvents or the need for secondary analyses for the quantification of released products.
In  this  work,  novel  fluorescent  compounds  were  synthesized  in  order  to  screen  and  characterize  PET-degrading
enzymes.  In  more  detail,  the  structural  design  of  these  compounds  mimics  the  structure  of  PET  oligomers  and
contains  a  fluorescent  moiety  (Figure  1),  whose  release  allows  real-time  monitoring  of  enzyme  activity.  The
performance  of  these  substrates  was  evaluated  after  conducting  kinetic  studies  using  various  polyesterases



including  LCC-ICCG  variant,  IsPETase  from  Ideonella  sakaiensis,  and  MoPE  from  Moraxella  sp.,  as  well  as  three
enzymes  that  are  not  considered  PET  hydrolyses  and  cannot  degrade  PET.  The  kinetic  parameters  were  further
correlated with the ability of the enzymes to degrade virgin PET, proving that some of these PET model substrates
can be utilized not only for a rapid, and sensitive high-throughput screening of novel PET-degrading enzymes but
also in evaluating the performance of the enzymes that have been mutated using protein engineering tools.



FIGURES

FIGURE 1
Figure 1
Structure of model substrate (A) mUPET1, (B) mUPET2
and (C) mUPET3. The fluorogenic moieties, which are
released  due  to  the  enzymatic  hydrolysis,  are
depicted in blue circles.

FIGURE 2
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