

# $N^\circ 1670$ / PC TOPIC(s) : Biocatalytic cascade reactions / Reaction design

## MR YIYU WANG

### **AUTHORS**

UNIVERSITY LONDON / UNIVERSITY COLLEGE LONDON, 20 GORDON STREET, LONDON HELEN HAILES / UNIVERSITY COLLEGE LONDON, 20 GORDON STREET, LONDON YU WANG / UNIVERSITY COLLEGE LONDON, 20 GORDON STREET, LONDON

### PURPOSE OF THE ABSTRACT

Optically active nitrogen heterocycles are widely found across many living organisms and also play important roles in fine chemical and pharmaceutical industries. The production of a single enantiomers is usually non-sustainable due to the use of toxic solvents and transition metal catalysts. In nature, transaminases catalyse the conversion between carbonyl compounds and amines in a relatively high efficiency and mild conditions. Some approaches have been developed to allow cascade reactions of spontaneous cyclisation to form desired optically pure amine products.

### **FIGURES**

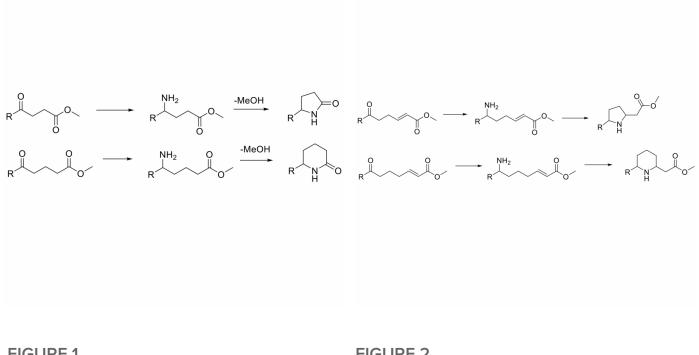



FIGURE 1 LACTAM FORMATION SUBSTRATES FIGURE 2 INTRAMOLECULAR MICHAEL ADDITION SUBSTRATES

#### **KEYWORDS**

TRANSAMINASE | BIOCATALYTIC CASCADE | SPONTANEOUS CYCLISATION | AMINE

#### BIBLIOGRAPHY

1. Mourelle Insua, Ángela, et al. "Conversion of  $\gamma$  and  $\delta$  Keto Esters into Optically Active Lactams. Transaminases in Cascade Processes." Advanced Synthesis & Catalysis 360.4 (2018): 686-695.

2. Ryan, James, et al. "Transaminase triggered aza-Michael approach for the enantioselective synthesis of piperidine scaffolds." Journal of the American Chemical Society 138.49 (2016): 15798-15800.